YoVDO

Human Activity Recognition - Learning with Less Labels and Privacy Preservation

Offered By: University of Central Florida via YouTube

Tags

Machine Learning Courses Data Labeling Courses Contrastive Learning Courses

Course Description

Overview

Explore cutting-edge approaches to Human Activity Recognition in this keynote talk from SPIE Automatic Target Recognition XXXII. Delve into innovative techniques for learning with limited labeled data and preserving privacy. Examine problem statements, results, and various approaches including privacy leakage prevention, pseudoleveling, and contrastive learning. Discover the potential of Zero Shot Learning and Local Local Contrast Loss in this field. Analyze experimental and qualitative results from cell surveys, gaining valuable insights into the future of activity recognition technology.

Syllabus

Intro
Problem Statement
Results
Problem
Approaches
Privacy leakage
Pseudoleveling
Contrasting
Local Local Contrast Loss
Zero Shot Learning
Evaluation
Cell Survey
Experimental Results
Qualitative Results


Taught by

UCF CRCV

Tags

Related Courses

How Google does Machine Learning 日本語版
Google Cloud via Coursera
How Google does Machine Learning em Português Brasileiro
Google Cloud via Coursera
Машинное обучение на больших данных
Higher School of Economics via Coursera
Practical Crowdsourcing for Efficient Machine Learning
Yandex via Coursera
Introduction to Amazon SageMaker Ground Truth (Traditional Chinese)
Amazon Web Services via AWS Skill Builder