Detecting Underwater Objects with YOLO-NAS Deep Learning
Offered By: Eran Feit via YouTube
Course Description
Overview
Learn how to implement underwater object detection using YOLO-NAS and Python in this comprehensive tutorial. Discover the process of importing and utilizing the YOLO-NAS model, training it with a custom underwater dataset, and making predictions with bounding boxes around detected objects. Gain hands-on experience with SuperGradients, a PyTorch-based computer vision library, and explore its compatibility with PyTorch Datasets and Dataloaders. Follow along as the instructor demonstrates each step, from installation to predicting test images, and acquire valuable skills in applying state-of-the-art object detection techniques to underwater imagery.
Syllabus
Introduction
Installation
Download the dataset
Train
Predict a test image
Taught by
Eran Feit
Related Courses
Structuring Machine Learning ProjectsDeepLearning.AI via Coursera Natural Language Processing on Google Cloud
Google Cloud via Coursera Introduction to Learning Transfer and Life Long Learning (3L)
University of California, Irvine via Coursera Advanced Deployment Scenarios with TensorFlow
DeepLearning.AI via Coursera Neural Style Transfer with TensorFlow
Coursera Project Network via Coursera