Detecting Underwater Objects with YOLO-NAS Deep Learning
Offered By: Eran Feit via YouTube
Course Description
Overview
Learn how to implement underwater object detection using YOLO-NAS and Python in this comprehensive tutorial. Discover the process of importing and utilizing the YOLO-NAS model, training it with a custom underwater dataset, and making predictions with bounding boxes around detected objects. Gain hands-on experience with SuperGradients, a PyTorch-based computer vision library, and explore its compatibility with PyTorch Datasets and Dataloaders. Follow along as the instructor demonstrates each step, from installation to predicting test images, and acquire valuable skills in applying state-of-the-art object detection techniques to underwater imagery.
Syllabus
Introduction
Installation
Download the dataset
Train
Predict a test image
Taught by
Eran Feit
Related Courses
Clasificación de imágenes: ¿cómo reconocer el contenido de una imagen?Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera Core ML: Machine Learning for iOS
Udacity Fundamentals of Deep Learning for Computer Vision
Nvidia via Independent Computer Vision and Image Analysis
Microsoft via edX Using GPUs to Scale and Speed-up Deep Learning
IBM via edX