Graph SAGE - Inductive Representation Learning on Large Graphs - GNN Paper Explained
Offered By: Aleksa Gordić - The AI Epiphany via YouTube
Course Description
Overview
Dive deep into the Graph SAGE paper, exploring the groundbreaking approach for using Graph Neural Networks (GNNs) on large-scale graphs. Learn about the key components of Graph SAGE, including its training process, neighborhood functions, and aggregator functions. Understand the method's expressiveness, mini-batch implementation, and how it addresses problems with previous graph embedding techniques. Compare Graph SAGE to other popular GNN architectures like GCN and GAT, gaining insights into its advantages and applications in processing large-scale graph data.
Syllabus
Intro
Problems with previous methods
High-level overview of the method
Some notes on the related work
Pseudo-code explanation
How do we train Graph SAGE?
Note on the neighborhood function
Aggregator functions
Results
Expressiveness of Graph SAGE
Mini-batch version
Problems with graph embedding methods drift
Comparison with GCN and GAT
Taught by
Aleksa Gordić - The AI Epiphany
Related Courses
Aplicaciones de la teoría de grafos a la vida realMiríadax Aplicaciones de la Teoría de Grafos a la vida real
Universitat Politècnica de València via UPV [X] Introduction to Computational Thinking and Data Science
Massachusetts Institute of Technology via edX Genome Sequencing (Bioinformatics II)
University of California, San Diego via Coursera Algorithmic Information Dynamics: From Networks to Cells
Santa Fe Institute via Complexity Explorer