Design and Analysis of Algorithms
Offered By: Chennai Mathematical Institute via Swayam
Course Description
Overview
This course will cover basic concepts in the design and analysis of algorithms.Asymptotic complexity, O() notationSorting and searchAlgorithms on graphs: exploration, connectivity, shortest paths, directed acyclic graphs, spanning treesDesign techniques: divide and conquer, greedy, dynamic programmingData structures: heaps, union of disjoint sets, search treesIntractabilityINTENDED AUDIENCE: Students in BE/BTech Computer Science, 2nd/3rd year.PRE-REQUISITES: Exposure to introductory courses on programming and data structures.INDUSTRY SUPPORT: This course should be of value to any company working in the area of software services and products.ABOUT CMI: Click here
Syllabus
Week 1
Module 1: Introduction
Module 2: Examples and motivation
Module 3: Examples and motivation
Module 4: Asymptotic complexity: informal concepts
Module 5: Asymptotic complexity: formal notation
Module 6: Asymptotic complexity: examples
Assignments MCQ/Fill in blanks (unique answer)
Week 2
Module 1: Searching in list: binary search
Module 2: Sorting: insertion sort
Module 3: Sorting: selection sort
Module 4: Sorting: merge sort
Module 5: Sorting: quicksort
Module 6: Sorting: stability and other issues
Assignments MCQ/Fill in blanks, programming assignment
Week 3
Module 1: Graphs: Motivation
Module 2: Graph exploration: BFS
Module 3: Graph exploration: DFS
Module 4: DFS numbering and applications
Module 5: Directed acyclic graphs
Module 6: Directed acyclic graphs
Assignments MCQ/Fill in blanks, programming assignment
Week 4
Module 1: Shortest paths: unweighted and weighted
Module 2: Single source shortest paths: Dijkstra
Module 3: Single source shortest paths: Dijkstra
Module 4: Minimum cost spanning trees: Prim’s algorithm
Module 5: Minimum cost spanning trees: Kruskal’s Algorithm
Module 6: Union-Find data structure
Assignments MCQ/Fill in blanks, programming assignment
Week 5
Module 1: Divide and conquer: counting inversions
Module 2: Divide and conquer: nearest pair of points
Module 3: Priority queues, heaps
Module 4: Priority queues, heaps
Module 5: Dijstra/Prims revisited using heaps
Module 6: Search Trees: Introduction
Assignments MCQ/Fill in blanks, programming assignment
Week 6
Module 1: Search Trees: Traversals, insertions, deletions
Module 2: Search Trees: Balancing
Module 3: Greedy : Interval scheduling
Module 4: Greedy : Proof strategies
Module 5: Greedy : Huffman coding
Module 6: Dynamic Programming: weighted interval scheduling
Assignments MCQ/Fill in blanks, programming assignment
Week 7
Module 1: Dynamic Programming: memoization
Module 2: Dynamic Programming: edit distance
Module 3: Dynamic Programming: longest ascending subsequence
Module 4: Dynamic Programming: matrix multiplication
Module 5: Dynamic Programming: shortest paths: Bellman Ford
Module 6: Dynamic Programming: shortest paths: Floyd Warshall
Assignments MCQ/Fill in blanks, programming assignment
Week 8
Module 1: Intractability: NP completeness
Module 2: Intractability: reductions
Module 3: Intractability: examples
Module 4: Intractability: more examples
Module 5: Misc topics
Module 6: Misc topics
Assignments MCQ/Fill in blanks
Module 1: Introduction
Module 2: Examples and motivation
Module 3: Examples and motivation
Module 4: Asymptotic complexity: informal concepts
Module 5: Asymptotic complexity: formal notation
Module 6: Asymptotic complexity: examples
Assignments MCQ/Fill in blanks (unique answer)
Week 2
Module 1: Searching in list: binary search
Module 2: Sorting: insertion sort
Module 3: Sorting: selection sort
Module 4: Sorting: merge sort
Module 5: Sorting: quicksort
Module 6: Sorting: stability and other issues
Assignments MCQ/Fill in blanks, programming assignment
Week 3
Module 1: Graphs: Motivation
Module 2: Graph exploration: BFS
Module 3: Graph exploration: DFS
Module 4: DFS numbering and applications
Module 5: Directed acyclic graphs
Module 6: Directed acyclic graphs
Assignments MCQ/Fill in blanks, programming assignment
Week 4
Module 1: Shortest paths: unweighted and weighted
Module 2: Single source shortest paths: Dijkstra
Module 3: Single source shortest paths: Dijkstra
Module 4: Minimum cost spanning trees: Prim’s algorithm
Module 5: Minimum cost spanning trees: Kruskal’s Algorithm
Module 6: Union-Find data structure
Assignments MCQ/Fill in blanks, programming assignment
Week 5
Module 1: Divide and conquer: counting inversions
Module 2: Divide and conquer: nearest pair of points
Module 3: Priority queues, heaps
Module 4: Priority queues, heaps
Module 5: Dijstra/Prims revisited using heaps
Module 6: Search Trees: Introduction
Assignments MCQ/Fill in blanks, programming assignment
Week 6
Module 1: Search Trees: Traversals, insertions, deletions
Module 2: Search Trees: Balancing
Module 3: Greedy : Interval scheduling
Module 4: Greedy : Proof strategies
Module 5: Greedy : Huffman coding
Module 6: Dynamic Programming: weighted interval scheduling
Assignments MCQ/Fill in blanks, programming assignment
Week 7
Module 1: Dynamic Programming: memoization
Module 2: Dynamic Programming: edit distance
Module 3: Dynamic Programming: longest ascending subsequence
Module 4: Dynamic Programming: matrix multiplication
Module 5: Dynamic Programming: shortest paths: Bellman Ford
Module 6: Dynamic Programming: shortest paths: Floyd Warshall
Assignments MCQ/Fill in blanks, programming assignment
Week 8
Module 1: Intractability: NP completeness
Module 2: Intractability: reductions
Module 3: Intractability: examples
Module 4: Intractability: more examples
Module 5: Misc topics
Module 6: Misc topics
Assignments MCQ/Fill in blanks
Taught by
Madhavan Mukund
Tags
Related Courses
Advanced Algorithms and ComplexityUniversity of California, San Diego via Coursera Advanced Data Structures, RSA and Quantum Algorithms
University of Colorado Boulder via Coursera Advanced Learning Algorithms
DeepLearning.AI via Coursera Advanced Machine Learning Algorithms
Fractal Analytics via Coursera Advanced Modeling for Discrete Optimization
University of Melbourne via Coursera