Generative Models in High Energy Physics
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore generative models in this comprehensive lecture by Elham E Khoda and Aishik Ghosh, part of the "Statistical Methods and Machine Learning in High Energy Physics" program at the International Centre for Theoretical Sciences. Delve into the application of deep machine learning techniques in high energy physics research, focusing on the analysis of large-scale data from experiments like the Large Hadron Collider. Learn about classification, identification, characterization, and estimation strategies used in particle physics searches. Gain insights into the future of data-driven high energy physics and the role of artificial intelligence in uncovering new physics phenomena. Suitable for PhD students and postdoctoral researchers in theoretical or experimental particle physics and astro-particle physics with programming experience and knowledge of event generation and data analysis frameworks.
Syllabus
Generative Models by Elham E Khoda & Aishik Ghosh
Taught by
International Centre for Theoretical Sciences
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent