Fine-tuning Large Language Models (LLMs) with Example Code
Offered By: Shaw Talebi via YouTube
Course Description
Overview
Learn how to fine-tune large language models (LLMs) for specific use cases in this comprehensive video tutorial. Explore the concept of fine-tuning, its importance, and three different approaches to the process. Follow a step-by-step guide for supervised fine-tuning, including three parameter tuning options with a focus on Low-Rank Adaptation (LoRA). Dive into a practical example with Python code, covering base model loading, data preparation, model evaluation, and fine-tuning using LoRA. Access additional resources, including a series playlist, blog post, example code, and relevant research papers to deepen your understanding of LLM fine-tuning techniques.
Syllabus
Intro -
What is Fine-tuning? -
Why Fine-tune -
3 Ways to Fine-tune -
Supervised Fine-tuning in 5 Steps -
3 Options for Parameter Tuning -
Low-Rank Adaptation LoRA -
Example code: Fine-tuning an LLM with LoRA -
Load Base Model -
Data Prep -
Model Evaluation -
Fine-tuning with LoRA -
Fine-tuned Model -
Taught by
Shaw Talebi
Related Courses
Artificial Intelligence for RoboticsStanford University via Udacity Intro to Computer Science
University of Virginia via Udacity Design of Computer Programs
Stanford University via Udacity Web Development
Udacity Programming Languages
University of Virginia via Udacity