Federated Machine Learning: A Scalable, Privacy-Preserving Approach Ready for Production
Offered By: GAIA via YouTube
Course Description
Overview
Explore the potential of federated machine learning in production environments through this insightful conference talk. Delve into the core concepts and essential features required for developing enterprise-grade federated learning platforms, with a focus on security, data privacy, scalability, fault tolerance, and performance in geographically distributed settings. Gain valuable insights from two active use cases demonstrating the application of regulated datasets across distributed locations. Learn from Salman Toor, an expert in federated machine learning, scientific data management, and distributed computing infrastructure, as he shares his expertise on this thriving area of research. Discover how federated machine learning creates new possibilities for privacy-preserving data analysis and its potential impact on ML engineers working in production environments.
Syllabus
Federated Machine Learning: A Scalable, Privacy-Preserving Approach Ready for Production by Salman T
Taught by
GAIA
Related Courses
Scientific ComputingUniversity of Washington via Coursera Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera High Performance Scientific Computing
University of Washington via Coursera Practical Numerical Methods with Python
George Washington University via Independent Julia Scientific Programming
University of Cape Town via Coursera