Quantifying and Reducing Gender Stereotypes in Word Embeddings
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore gender stereotypes in word embeddings and learn techniques to quantify and reduce bias in this hands-on tutorial from the FAT* 2018 conference. Dive into the basics of word embedding learning and applications, then gain practical experience writing programs to display and measure gender stereotypes in these widely-used natural language processing tools. Discover methods to mitigate bias and create fairer algorithmic decision-making processes. Work with iPython notebooks to explore real-world examples and complete exercises that reinforce concepts of fairness in machine learning and natural language processing.
Syllabus
FAT* 2018 Hands-on Tutorial: Quantifying and Reducing Gender Stereotypes in Word Embeddings
Taught by
ACM FAccT Conference
Related Courses
A Bayesian Model of Cash Bail DecisionsAssociation for Computing Machinery (ACM) via YouTube A Pilot Study in Surveying Clinical Judgments to Evaluate Radiology Report Generation
Association for Computing Machinery (ACM) via YouTube A Review of Taxonomies of Explainable Artificial Intelligence - XAI Methods
Association for Computing Machinery (ACM) via YouTube A Semiotics-Based Epistemic Tool to Reason About Ethical Issues in Digital Technology Design and Development
Association for Computing Machinery (ACM) via YouTube A Statistical Test for Probabilistic Fairness
Association for Computing Machinery (ACM) via YouTube