Second-Order ODE: Spring-Mass-Damper
Offered By: Steve Brunton via YouTube
Course Description
Overview
Explore a comprehensive tutorial on solving second-order ordinary differential equations (ODEs) focusing on the damped harmonic oscillator for a mass on a spring with damping. Derive the spring-mass-damper equations from F=ma, solve the equation by guessing the solution x(t) = exp(a*t), and understand the characteristic equation. Learn to use initial conditions to find undetermined coefficients and write the system as a matrix. Gain practical experience with Matlab and Python code examples to plot the solution. Perfect for those studying differential equations, physics, or engineering mechanics.
Syllabus
Deriving the Spring-Mass-Damper Equations from F=ma
Solve the Equation by Guessing Solution xt = expa*t
The Characteristic Equation
Using Initial Conditions to Find Undetermined Coefficients
Writing as a Matrix System of Equations
Matlab Code Example
Python Code Example
Taught by
Steve Brunton
Related Courses
Artificial Intelligence for RoboticsStanford University via Udacity Intro to Computer Science
University of Virginia via Udacity Design of Computer Programs
Stanford University via Udacity Web Development
Udacity Programming Languages
University of Virginia via Udacity