Ergodicity and Its Breaking Through the Prism of Quantum Entanglement - Part 1
Offered By: ICTP Condensed Matter and Statistical Physics via YouTube
Course Description
Overview
Explore the concept of ergodicity and its breaking in quantum systems through the lens of quantum entanglement in this comprehensive lecture. Delve into the motivation behind studying this phenomenon and examine various types of experiments used to investigate it. Learn about simple and concrete models, including onsite disorder and quantum quench experiments. Investigate the role of symmetry breaking and the three key ingredients involved in these processes. Gain insights into thermalization, statistical mechanics, and global conservation laws. Analyze the concepts of prethermalization and weak ergodicity breaking. Examine the interplay between entanglement, complexity, and thermalization, concluding with a discussion on the Eigenstate Thermalization Hypothesis (ETH).
Syllabus
Introduction
Motivation
Types of experiments
Simple models
Concrete model
Onsite disorder
Quantum quench experiment
Symmetry breaking
Three ingredients
Thermalization
Statistical mechanics
Global conservation laws
Prethermalization
Weak organicity breaking prime
Prethermalisation
entanglement and complexity
thermalisation
eth
Taught by
ICTP Condensed Matter and Statistical Physics
Related Courses
Statistical Mechanics: Algorithms and ComputationsÉcole normale supérieure via Coursera Physics of Materials
Indian Institute of Technology Madras via Swayam From Atoms to Materials: Predictive Theory and Simulations
Purdue University via edX Statistical Mechanics
Indian Institute of Technology Madras via Swayam Thermodynamics: Classical To Statistical
Indian Institute of Technology Guwahati via Swayam