Enable Production ML with Databricks Feature Store
Offered By: Databricks via YouTube
Course Description
Overview
Discover how to overcome the challenges of productionalizing machine learning models with Databricks Feature Store in this 33-minute video. Learn about the first feature store built on the data lakehouse, which simplifies production ML by drawing data sources from a central lakehouse and making feature tables accessible for both machine learning and analytics use cases. Explore how Feature Store integrates seamlessly with Apache Spark™ and MLflow, enabling automatic lineage tracking and feature value lookup at inference time. Watch a demonstration of these capabilities in action and understand how to apply them to your ML projects. Gain insights into real-time features, online specifications, table publishing, and using Postman for testing. By the end of this video, you'll have a comprehensive understanding of how Databricks Feature Store can streamline your ML production process and help overcome common data-related obstacles.
Syllabus
Introduction
Overview
Data Challenges
Feature Store
Feature Store Demo
RealTime Features
Challenges
Code
Problem
Whats Next
Create Online Spec
Publish Table
Postman
Summary
Taught by
Databricks
Related Courses
Predicción del fraude bancario con autoML y PycaretCoursera Project Network via Coursera Clasificación de datos de Satélites con autoML y Pycaret
Coursera Project Network via Coursera Regresión (ML) en la vida real con PyCaret
Coursera Project Network via Coursera ML Pipelines on Google Cloud
Google Cloud via Coursera ML Pipelines on Google Cloud
Pluralsight