Emergence of Universal Randomness in Quantum Many-body Dynamics
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore the emergence of universal randomness in quantum many-body dynamics through this 44-minute lecture by Soonwon Choi from MIT. Delve into the unexpected discovery of natural quantum many-body dynamics giving rise to pure state ensembles with universal statistical properties. Examine two types of ensembles: the projected ensemble and the temporal ensemble, and understand the phenomena of deep thermalization and Hilbert-space ergodicity. Learn about the emergence of approximate state designs and their applications in quantum information theory. Discover how these findings can be applied to generalize the linear-cross entropy benchmark for analog quantum simulators, develop parameter estimation and noise characterization techniques, and establish connections between random matrix theory and realistic ergodic quantum many-body dynamics. Gain insights into modern quantum simulation experiments and their implications for near-term quantum computers, including fault tolerance, benchmarking, quantum advantage, and quantum algorithms.
Syllabus
Emergence of Universal Randomness in Quantum Many-body Dynamics
Taught by
Simons Institute
Related Courses
Quantum Information Science II: Advanced quantum algorithms and information theoryMassachusetts Institute of Technology via edX Physical Basics of Quantum Computing
Saint Petersburg State University via Coursera Advanced Quantum Mechanics with Applications
Indian Institute of Technology Guwahati via Swayam Selected chapters of quantum mechanics for modern engineering
National University of Science and Technology MISiS via edX Predicting Many Properties of a Quantum System from Very Few Measurements
Simons Institute via YouTube