Emergence of Universal Randomness in Quantum Many-body Dynamics
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore the emergence of universal randomness in quantum many-body dynamics through this 44-minute lecture by Soonwon Choi from MIT. Delve into the unexpected discovery of natural quantum many-body dynamics giving rise to pure state ensembles with universal statistical properties. Examine two types of ensembles: the projected ensemble and the temporal ensemble, and understand the phenomena of deep thermalization and Hilbert-space ergodicity. Learn about the emergence of approximate state designs and their applications in quantum information theory. Discover how these findings can be applied to generalize the linear-cross entropy benchmark for analog quantum simulators, develop parameter estimation and noise characterization techniques, and establish connections between random matrix theory and realistic ergodic quantum many-body dynamics. Gain insights into modern quantum simulation experiments and their implications for near-term quantum computers, including fault tolerance, benchmarking, quantum advantage, and quantum algorithms.
Syllabus
Emergence of Universal Randomness in Quantum Many-body Dynamics
Taught by
Simons Institute
Related Courses
Thermalization in Quantum Chromodynamics - Ab Initio Approaches and Interdisciplinary ConnectionsKavli Institute for Theoretical Physics via YouTube Ergodicity Breaking in Quantum Many-Body Systems
International Centre for Theoretical Sciences via YouTube Turbulence - Arrow of Time and Equilibrium-Nonequilibrium Behaviour
International Centre for Theoretical Sciences via YouTube Modelling Aggregation and Fragmentation Phenomena Using the Smoluchowski Equation by Argya Dutta
International Centre for Theoretical Sciences via YouTube Quantum Thermalization and Many-Body Anderson Localization by David Huse
International Centre for Theoretical Sciences via YouTube