Efficient Multi-Cluster GPU Workload Management with Karmada and Volcano
Offered By: CNCF [Cloud Native Computing Foundation] via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore efficient multi-cluster GPU workload management using Karmada and Volcano in this informative conference talk. Discover solutions to critical challenges faced when running AI/ML workloads on large-scale, heterogeneous GPU environments across multiple Kubernetes clusters. Learn about intelligent GPU workload scheduling, cluster failover support for seamless workload migration, two-level scheduling consistency and efficiency, and balancing utilization and QoS for resource sharing among workloads with different priorities. Gain insights into addressing resource fragmentation, operational costs, and cross-resource scheduling in cloud native AI platforms spanning multiple data centers and diverse GPU types.
Syllabus
Efficient Multi-Cluster GPU Workload Management with Karmada and Volcano - Kevin Wang, Huawei
Taught by
CNCF [Cloud Native Computing Foundation]
Related Courses
A Beginner’s Guide to DockerPackt via FutureLearn A Beginner's Guide to Kubernetes for Container Orchestration
Packt via FutureLearn A Practical Guide to Amazon EKS
A Cloud Guru Advanced Networking with Kubernetes on AWS
A Cloud Guru AIOps Essentials (Autoscaling Kubernetes with Prometheus Metrics)
A Cloud Guru