Perform Real-Time Object Detection with YOLOv3
Offered By: Coursera Project Network via Coursera
Course Description
Overview
In this 1-hour long project-based course, you will perform real-time object detection with YOLOv3: a state-of-the-art, real-time object detection system. Specifically, you will detect objects with the YOLO system using pre-trained models on a GPU-enabled workstation. To apply YOLO to videos and save the corresponding labelled videos, you will build a custom command-line application in Python that employs a pre-trained model to detect, localize, and classify objects. It will use OpenCV to read the video streams, draw bounding boxes around detected objects, label the objects along with confidence scores, and save the labelled videos to disk.
This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed.
Notes:
- You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want.
- This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed.
Notes:
- You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want.
- This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Taught by
Snehan Kekre
Related Courses
2D image processingHigher School of Economics via Coursera Analyzing Video with OpenCV and NumPy
Coursera Project Network via Coursera Basics in computer vision
Higher School of Economics via Coursera Computer Vision: Neural Transfer Style & Green Screen Effect
Coursera Project Network via Coursera Computer Vision - Object Detection with OpenCV and Python
Coursera Project Network via Coursera