YoVDO

Ontologies, Graph Deep Learning, and AI in Materials Science

Offered By: Inside Livermore Lab via YouTube

Tags

Artificial Intelligence Courses Data Science Courses Materials Science Courses Ontology Courses Photovoltaics Courses Foundation Models Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the integration of ontologies, semantic reasoning, and graph-based deep learning in AI through this Data Science Institute seminar presented by Dr. Pawan Tripathi from Case Western Reserve University. Delve into the paradigm shift in studying high-dimensional multimodal problems within advanced manufacturing, synchrotron science, and photovoltaics. Learn about 'mds-onto', a low-level ontology developed for multiple materials science domains, and discover how foundation models utilizing spatiotemporal graph neural networks enable multimodal analysis. Understand the capabilities of data-driven digital twins (ddDTs) in answering task-specific questions across various manufacturing processes. Gain insights into how incorporating ontologies and knowledge graphs enhances AI intelligence and decision-making, improving process efficiency and product innovation. Explore Dr. Tripathi's expertise in materials data science, interface structural simulations, and developing automated analysis pipelines for large multimodal datasets from diverse experiments.

Syllabus

DSI Seminar | Ontologies, Graph Deep Learning, & AI


Taught by

Inside Livermore Lab

Related Courses

Data Science Basics
A Cloud Guru
Introduction to Machine Learning
A Cloud Guru
Address Business Issues with Data Science
CertNexus via Coursera
Advanced Clinical Data Science
University of Colorado System via Coursera
Advanced Data Science Capstone
IBM via Coursera