YoVDO

Could a Purely Self-Supervised Foundation Model Achieve Grounded Language Understanding?

Offered By: Santa Fe Institute via YouTube

Tags

Artificial Intelligence Courses Computer Science Courses Linguistics Courses Epistemology Courses Metaphysics Courses Semantics Courses Foundation Models Courses

Course Description

Overview

Explore a thought-provoking lecture by Stanford University Professor Chris Potts examining the potential for purely self-supervised foundation models to achieve grounded language understanding. Delve into topics including classical AI approaches, brain-mimicking systems, conceptions of semantics, and the challenges of behavioral testing for foundation models. Analyze the metaphysics and epistemology of understanding, and discover findings on causal abstraction in large networks. Gain insights into cutting-edge AI research and its implications for language comprehension and artificial intelligence development.

Syllabus

Intro
Could a purely self-supervised Foundation Model achieve grounded language understanding?
Could a Machine Think? Classical Al is unlikely to yield conscious machines, systems that mimic the brain might
A quick summary of "Could a machine think?"
Foundation Models (FMs)
Self-supervision
Two paths to world-class Al chess?
Conceptions of semantics
Bender & Koller 2020: Symbol streams lack crucial information
Multi-modal streams
Metaphysics and epistemology of understanding
Behavioral testing: Tricky with Foundation Models
Internalism at work: Causal abstraction analysis
Findings of causal abstraction in large networks


Taught by

Santa Fe Institute

Tags

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Artificial Intelligence for Robotics
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent