Differentiable Programming for End-to-end Optimization of Experiments - Lecture 5
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore differentiable programming for end-to-end optimization of experiments in this lecture by Tommaso Dorigo, part of the "Statistical Methods and Machine Learning in High Energy Physics" program. Delve into advanced techniques for optimizing experimental design and analysis in high energy physics research. Learn how differentiable programming can be applied to improve data collection, processing, and interpretation in complex particle physics experiments. Gain insights into cutting-edge methodologies that bridge the gap between theoretical models and experimental outcomes, potentially revolutionizing the way physicists approach data analysis and experimental design in the field of high energy physics.
Syllabus
Differentiable Programming for End-to-end Optimization of Experiments (Lecture-5) by Tommaso Dorigo
Taught by
International Centre for Theoretical Sciences
Related Courses
Физика как глобальный проектNational Research Nuclear University MEPhI via Coursera Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2
IIT Hyderabad via Swayam Deep Learning Pipelines for High Energy Physics Using Apache Spark and Distributed Keras
Databricks via YouTube Helium Dimers and Trimers - From Imaging of Structure to Movies of Ultrafast Dynamics - Reinhard Dorner
Kavli Institute for Theoretical Physics via YouTube Bosons and Multi-Component Fermions Near Unitarity - Ubirajara van Kolck
Kavli Institute for Theoretical Physics via YouTube