YoVDO

Scientific Uses of Automatic Differentiation - DDPS

Offered By: Inside Livermore Lab via YouTube

Tags

Automatic Differentiation Courses Machine Learning Courses Fluid Dynamics Courses Scientific Computing Courses Partial Differential Equations Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the scientific applications of automatic differentiation in this 1-hour 8-minute lecture by Michael Brenner, part of the Data-Driven Physical Simulations series. Discover how tools underlying the machine learning revolution, particularly automatic differentiation, offer significant opportunities for scientific discovery. Learn about various research directions utilizing automatic differentiation and large-scale optimization to solve scientific problems, including developing new algorithms for partial differential equations, designing energy landscapes for self-assembly, uncovering unstable solutions in fluid dynamics, modeling organismal development, implementing nonequilibrium statistical mechanics protocols, designing fluid rheology, and applying statistical mechanics algorithms to protein self-assembly. Gain insights into innovative approaches and thought processes for leveraging these tools in scientific research.

Syllabus

DDPS |Scientific Uses of Automatic Differentiation by Michael Brenner


Taught by

Inside Livermore Lab

Related Courses

Differential Equations in Action
Udacity
Dynamical Modeling Methods for Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera
An Introduction to Functional Analysis
École Centrale Paris via Coursera
Practical Numerical Methods with Python
George Washington University via Independent
The Finite Element Method for Problems in Physics
University of Michigan via Coursera