YoVDO

Regression with Automatic Differentiation in TensorFlow

Offered By: Coursera Project Network via Coursera

Tags

TensorFlow Courses Machine Learning Courses Python Courses Linear Regression Courses Gradient Descent Courses Automatic Differentiation Courses

Course Description

Overview

In this 1.5 hour long project-based course, you will learn about constants and variables in TensorFlow, you will learn how to use automatic differentiation, and you will apply automatic differentiation to solve a linear regression problem. By the end of this project, you will have a good understanding of how machine learning algorithms can be implemented in TensorFlow. In order to be successful in this project, you should be familiar with Python, Gradient Descent, Linear Regression. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Syllabus

  • Regression with Automatic Differentiation in TensorFlow
    • Welcome to Regression with Automatic Differentiation in TensorFlow. In this project, we will get started with some of the important basics of TensorFlow - like tensor constants, variables, and automatic differentiation. We will then apply this knowledge to solve a linear regression problem. By the end of the project, you will have a good understanding on how to approach implementing machine learning algorithms in TensorFlow.

Taught by

Amit Yadav

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent