Physics Informed Machine Learning through Symbolic Regression
Offered By: Inside Livermore Lab via YouTube
Course Description
Overview
Explore a novel framework using symbolic regression to identify ground truth models from scarce and noisy data in this hour-long lecture by Dr. George M. Bollas. Discover how this approach successfully identifies partial differential equation (PDE) models from time-variant data, outperforming similar methods when data is limited. Learn about the framework's robustness to noise and scarcity, successfully recovering models with up to 50% noise. Compare this approach to Physics-Informed Neural Networks (PINN) using NVIDIA's Modulus software package, and examine the benefits and drawbacks of symbolic regression versus neural networks. Explore applications in fault detection through a genetic programming algorithm that augments dynamic system models. Gain insights into Dr. Bollas' interdisciplinary research merging energy technology, process systems engineering, and model-based systems engineering, with applications in various industries including energy, chemical, manufacturing, naval, and aerospace.
Syllabus
DDPS | ‘Physics Informed Machine Learning through Symbolic Regression’
Taught by
Inside Livermore Lab
Related Courses
Data AnalysisJohns Hopkins University via Coursera Computing for Data Analysis
Johns Hopkins University via Coursera Scientific Computing
University of Washington via Coursera Introduction to Data Science
University of Washington via Coursera Web Intelligence and Big Data
Indian Institute of Technology Delhi via Coursera