Physics Informed Machine Learning through Symbolic Regression
Offered By: Inside Livermore Lab via YouTube
Course Description
Overview
Explore a novel framework using symbolic regression to identify ground truth models from scarce and noisy data in this hour-long lecture by Dr. George M. Bollas. Discover how this approach successfully identifies partial differential equation (PDE) models from time-variant data, outperforming similar methods when data is limited. Learn about the framework's robustness to noise and scarcity, successfully recovering models with up to 50% noise. Compare this approach to Physics-Informed Neural Networks (PINN) using NVIDIA's Modulus software package, and examine the benefits and drawbacks of symbolic regression versus neural networks. Explore applications in fault detection through a genetic programming algorithm that augments dynamic system models. Gain insights into Dr. Bollas' interdisciplinary research merging energy technology, process systems engineering, and model-based systems engineering, with applications in various industries including energy, chemical, manufacturing, naval, and aerospace.
Syllabus
DDPS | ‘Physics Informed Machine Learning through Symbolic Regression’
Taught by
Inside Livermore Lab
Related Courses
Inverse Methods in Heat TransferIndian Institute of Technology Madras via Swayam Laboratory for Interdisciplinary Breakthrough Science - Hybrid
International Centre for Theoretical Sciences via YouTube Improving the Variational Learning of Physics-Driven Neural Generative Models
Alan Turing Institute via YouTube HypoSVI- Earthquake Hypocentre Inversion With Stein Variational Inference and Physics Informed Neural Networks
Alan Turing Institute via YouTube Emulating InterStellar Medium Chemistry with Physics Informed Neural Networks
Alan Turing Institute via YouTube