YoVDO

Physics Informed Machine Learning through Symbolic Regression

Offered By: Inside Livermore Lab via YouTube

Tags

Physics Informed Machine Learning Courses Data Science Courses Partial Differential Equations Courses Automatic Differentiation Courses Physics Informed Neural Networks Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a novel framework using symbolic regression to identify ground truth models from scarce and noisy data in this hour-long lecture by Dr. George M. Bollas. Discover how this approach successfully identifies partial differential equation (PDE) models from time-variant data, outperforming similar methods when data is limited. Learn about the framework's robustness to noise and scarcity, successfully recovering models with up to 50% noise. Compare this approach to Physics-Informed Neural Networks (PINN) using NVIDIA's Modulus software package, and examine the benefits and drawbacks of symbolic regression versus neural networks. Explore applications in fault detection through a genetic programming algorithm that augments dynamic system models. Gain insights into Dr. Bollas' interdisciplinary research merging energy technology, process systems engineering, and model-based systems engineering, with applications in various industries including energy, chemical, manufacturing, naval, and aerospace.

Syllabus

DDPS | ‘Physics Informed Machine Learning through Symbolic Regression’


Taught by

Inside Livermore Lab

Related Courses

Deep Learning to Discover Coordinates for Dynamics - Autoencoders & Physics Informed Machine Learning
Steve Brunton via YouTube
Machine Learning in Fluid Dynamics and Climate Physics
Alan Turing Institute via YouTube
Uncertainty Quantification with Physics-Informed Machine Learning
Alan Turing Institute via YouTube
Unique Challenges in Physics-Informed Machine Learning
Alan Turing Institute via YouTube
Physics Informed Machine Learning: High-Level Overview of AI and ML in Science and Engineering
Steve Brunton via YouTube