YoVDO

Guided Deep Learning Manifold Linearization of Porous Media Flow Equations for Digital Twins Operations

Offered By: Inside Livermore Lab via YouTube

Tags

Deep Learning Courses Porous Media Courses Digital Twins Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore advanced techniques in Digital Twin operations for closed-loop reservoir management in this 56-minute talk. Delve into physics-aware machine learning (PA-ML) enhanced reservoir simulation, focusing on two innovative approaches. Learn about improvements to the Embed to Control and Observe method (E2CO) for reservoir modeling, combining data-driven model reduction strategies with deep neural networks. Discover extensions to the POD model reduction technique, including state-space augmentation for bi-linear systems and autoencoder-based Koopman operator linearization. Understand how these methods can significantly speed up reservoir simulations while maintaining high accuracy in pressure and saturation predictions. Gain insights from Dr. Eduardo Gildin, a distinguished Professor of Petroleum Engineering at Texas A&M University, on cutting-edge research in reservoir simulation, optimization, and drilling modeling.

Syllabus

DDPS | Guided Deep Learning Manifold Linearization of Porous Media Flow Equations


Taught by

Inside Livermore Lab

Related Courses

AWS Certified Machine Learning - Specialty (LA)
A Cloud Guru
Google Cloud AI Services Deep Dive
A Cloud Guru
Introduction to Machine Learning
A Cloud Guru
Deep Learning and Python Programming for AI with Microsoft Azure
Cloudswyft via FutureLearn
Advanced Artificial Intelligence on Microsoft Azure: Deep Learning, Reinforcement Learning and Applied AI
Cloudswyft via FutureLearn