Differentiable Programming for Modeling and Control of Dynamical Systems
Offered By: Inside Livermore Lab via YouTube
Course Description
Overview
Explore differentiable programming for optimal control of dynamical systems in this insightful talk. Delve into differentiable predictive control (DPC) as a model-based policy optimization method, integrating classical model predictive control principles with scientific machine learning. Learn how domain-aware differentiable models for dynamical systems are leveraged for offline policy optimization under nonlinear constraints. Discover DPC's scalability, data efficiency, and constraints handling through simulation case studies in building control and dynamic economic dispatch. Examine the experimental demonstration of DPC's computational and memory efficiency in embedded implementation on a laboratory device, showcasing its potential for control as a service applications.
Syllabus
DDPS | Differentiable Programming for Modeling and Control of Dynamical Systems by Jan Drgona
Taught by
Inside Livermore Lab
Related Courses
Embedded Systems - Shape The World: Microcontroller Input/OutputThe University of Texas at Austin via edX Model Checking
Chennai Mathematical Institute via Swayam Introduction to the Internet of Things and Embedded Systems
University of California, Irvine via Coursera Sistemas embebidos: Aplicaciones con Arduino
Universidad Nacional Autónoma de México via Coursera Quantitative Formal Modeling and Worst-Case Performance Analysis
EIT Digital via Coursera