Differentiable Programming for Modeling and Control of Dynamical Systems
Offered By: Inside Livermore Lab via YouTube
Course Description
Overview
Explore differentiable programming for optimal control of dynamical systems in this insightful talk. Delve into differentiable predictive control (DPC) as a model-based policy optimization method, integrating classical model predictive control principles with scientific machine learning. Learn how domain-aware differentiable models for dynamical systems are leveraged for offline policy optimization under nonlinear constraints. Discover DPC's scalability, data efficiency, and constraints handling through simulation case studies in building control and dynamic economic dispatch. Examine the experimental demonstration of DPC's computational and memory efficiency in embedded implementation on a laboratory device, showcasing its potential for control as a service applications.
Syllabus
DDPS | Differentiable Programming for Modeling and Control of Dynamical Systems by Jan Drgona
Taught by
Inside Livermore Lab
Related Courses
Introduction to Scientific Machine LearningPurdue University via edX Scientific Machine Learning: Opportunities and Challenges - Keynote
The Julia Programming Language via YouTube Scientific Machine Learning - Where Physics-based Modeling Meets Data-driven Learning
Santa Fe Institute via YouTube AI for Science - Expo Stage Talk - AAAS Annual Meeting
AAAS Annual Meeting via YouTube Leveraging Physics-Induced Bias in Scientific Machine Learning for Computational Mechanics
Alan Turing Institute via YouTube