YoVDO

Gradients Are Not All You Need - Machine Learning Research Paper Explained

Offered By: Yannic Kilcher via YouTube

Tags

Machine Learning Courses Optimization Algorithms Courses Backpropagation Courses Differentiable Programming Courses

Course Description

Overview

Explore the limitations of differentiable programming techniques in machine learning through this in-depth video analysis. Delve into the chaos-based failure mode that affects various differentiable systems, from recurrent neural networks to numerical physics simulations. Examine the connection between this failure and the spectrum of the Jacobian, and learn criteria for predicting when differentiation-based optimization algorithms might falter. Investigate examples in policy learning, meta-learning optimizers, and disk packing to understand the practical implications. Discover potential solutions and consider the advantages of black-box methods in overcoming these challenges.

Syllabus

- Foreword
- Intro & Overview
- Backpropagation through iterated systems
- Connection to the spectrum of the Jacobian
- The Reparameterization Trick
- Problems of reparameterization
- Example 1: Policy Learning in Simulation
- Example 2: Meta-Learning Optimizers
- Example 3: Disk packing
- Analysis of Jacobians
- What can be done?
- Just use Black-Box methods


Taught by

Yannic Kilcher

Related Courses

4.0 Shades of Digitalisation for the Chemical and Process Industries
University of Padova via FutureLearn
A Day in the Life of a Data Engineer
Amazon Web Services via AWS Skill Builder
FinTech for Finance and Business Leaders
ACCA via edX
Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera
Accounting Data Analytics
Coursera