Deep Neural Operators with Reliable Extrapolation for Multiphysics and Multiscale Problems
Offered By: Inside Livermore Lab via YouTube
Course Description
Overview
Explore the potential of deep neural networks in learning operators of complex systems in this one-hour webinar on deep neural operators. Delve into the universal approximation theorem of operators and its implications for multiphysics and multiscale problems. Learn about the deep operator network (DeepONet) and its extensions, including DeepM&Mnet, POD-DeepONet, (Fourier-)MIONet, and multifidelity DeepONet. Discover applications in diverse fields such as nanoscale heat transport, bubble growth dynamics, high-speed boundary layers, electroconvection, hypersonics, and geological carbon sequestration. Gain insights into addressing the challenge of extrapolation for deep neural operators, including quantifying extrapolation complexity and developing a complete workflow for reliable extrapolation.
Syllabus
DDPS | Deep neural operators with reliable extrapolation for multiphysics & multiscale problems
Taught by
Inside Livermore Lab
Related Courses
Scientific ComputingUniversity of Washington via Coursera Differential Equations in Action
Udacity Initiation à la théorie des distributions
École Polytechnique via Coursera Everything is the Same: Modeling Engineered Systems
Northwestern University via Coursera Analyse numérique pour ingénieurs
École Polytechnique Fédérale de Lausanne via Coursera