YoVDO

Deep Q-Networks

Offered By: Pascal Poupart via YouTube

Tags

Reinforcement Learning Courses Artificial Intelligence Courses Deep Learning Courses Gradient Descent Courses Q-learning Courses Deep Q Networks Courses

Course Description

Overview

Explore deep Q-networks in this comprehensive 41-minute lecture by Pascal Poupart. Delve into key concepts including approximation, optimization, Q-learning, gradient Q-learning, and experience replay. Learn about divergence issues and their solutions, gradient descent techniques, and the implementation of target networks. Discover the architecture and algorithm behind deep Q-networks, and examine their performance results in various applications.

Syllabus

Intro
Overview
Approximation
Optimization
QLearning
QLearning Recap
Gradient QLearning
Divergence
Experience Replay
Gradient Descent
Target Network
Deep Queue Network
Deep Queue Network Algorithm
Deep Queue Network Architecture
Deep Queue Network Results


Taught by

Pascal Poupart

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Artificial Intelligence for Robotics
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent