YoVDO

Compactifications of Moduli — Geometry vs. Hodge Theory

Offered By: IMSA via YouTube

Tags

Moduli Space Courses Algebraic Geometry Courses Compactifications Courses Hodge Theory Courses

Course Description

Overview

Explore the construction and compactification of moduli spaces in algebraic geometry through this lecture by Radu Laza from SUNY Stony Brook. Compare geometric and Hodge theoretic approaches to the compactification problem, examining examples and issues in the classical case related to variations of Hodge structures of abelian variety and K3 types. Delve into a project analyzing H and I-surfaces, which represent the simplest non-classical case of surfaces of general type with p_g=2. Gain insights into this topic of great interest in algebraic geometry, presented at the University of Miami on February 1, 2021.

Syllabus

Compactifications of Moduli — Geometry vs. Hodge Theory


Taught by

IMSA

Related Courses

Introduction to Algebraic Geometry and Commutative Algebra
Indian Institute of Science Bangalore via Swayam
Introduction to Algebraic Geometry and Commutative Algebra
NPTEL via YouTube
Basic Algebraic Geometry - Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity
NPTEL via YouTube
Basic Algebraic Geometry
NIOS via YouTube
Affine and Projective Geometry, and the Problem of Lines
Insights into Mathematics via YouTube