The Geometric Langlands Conjecture and Non-Abelian Hodge Theory - Lecture 1
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore the first lecture on the Geometric Langlands conjecture and non-abelian Hodge theory, delivered by Ron Donagi as part of the Quantum Fields, Geometry and Representation Theory program. Delve into the intricate world of mathematical physics, covering topics such as the Langlands program, surfaces, local systems, and various versions of the Geometric Langlands Conjecture (GLC). Learn about abelian and non-abelian cases, proofs, reformulations, and the Hecke correspondence. Gain insights into randified and compactified versions of the GLC, and prepare for future lectures in this series. Engage with a Q&A session at the end to deepen your understanding of these complex mathematical concepts and their connections to theoretical physics.
Syllabus
Quantum Fields, Geometry and Representation Theory
The Geometric Langlands conjecture and non-abelian Hodge theory Lecture 1
Langlands program
GLC
Surfaces
G any group: G local system on x
Abelian GLC
Proof
Proof 2
Reformulation
GLC - Correspondence
Heck correspondence
GLC - One Version Generated language
Other versions
Randified abelian GLC
Compactified
Conjecture
Next class
Q&A
Taught by
International Centre for Theoretical Sciences
Related Courses
Introduction to Galois TheoryHigher School of Economics via Coursera MIP* = RE Part 1 - The Quantum Low-Degree Test
Simons Institute via YouTube The One Dimensional Random Walk Hypergroup - Diffusion Symmetry
Insights into Mathematics via YouTube Change of Basis and Taylor Coefficient Vectors - Wild Linear Algebra A - NJ Wildberger
Insights into Mathematics via YouTube Representation Theory & Combinatorics of the Symmetry Group and Related Structures - Monica Vazirani
Institute for Advanced Study via YouTube