Machine Learning for a Rescue
Offered By: code::dive conference via YouTube
Course Description
Overview
Syllabus
Intro
RESCUE
Source Ministry
CLIENT PROBLEM
M BACKLINKS CLASSIFY THEM
1ST APPROACH IF-OLOGY UGLY CODE FOR POC
ND APPROACH NAIVE MACHINE LEARNING
DOING WITHOUT KNOWING ISA. RECIPE FOR A FAILURE
RD APPROACH, FINAL DATA ORIENTED MACHINE LEARNING WORKFLOW
CLASSIFICATION REGRESSION CLUSTERING DIMENSIONALITY REDUCTION ASSOCIATION RULES
SUPERVISED LEARNING UNSUPERVISED LEARNING REINFORCEMENT LEARNING
OUR PROBLEM
DEVELOPERS DATASET
REGRESSION PREDICTING VALUES
CLUSTERING K-MEANS
1936, RONALD FISHER IRIS DATASET
RESULTS STABILITY
CLASSIFICATION FAST ARTIFICIAL NEURAL NETWORK
HOW TO CLASSIFY OUR DATASET AUTOMATED WAY TO FIND JUNIOR/SENIOR DEVELOPER?
TECHNOLOGY
FOCUS ON IDEAS NOT TOOLS
ML IS NOT A SINGLE RUN
IT'S A PROCESS
DEFINE A PROBLEM ANALYZE YOUR DATA UNDERSTAND YOUR DATA PREPARE DATA FOR ML SELECT & RUN ALGO(S) TUNE ALGO(S) PARAMETERS SELECT FINAL MODEL VALIDATE FINAL MODEL
Taught by
code::dive conference
Related Courses
Graph Partitioning and ExpandersStanford University via NovoEd The Analytics Edge
Massachusetts Institute of Technology via edX More Data Mining with Weka
University of Waikato via Independent Mining Massive Datasets
Stanford University via edX The Caltech-JPL Summer School on Big Data Analytics
California Institute of Technology via Coursera