YoVDO

Neural Nets for NLP 2021 - Attention

Offered By: Graham Neubig via YouTube

Tags

Neural Networks Courses Natural Language Processing (NLP) Courses Attention Mechanisms Courses Transformer Architecture Courses

Course Description

Overview

Learn about attention mechanisms in neural networks for natural language processing in this comprehensive lecture from CMU's Neural Networks for NLP course. Explore the "Attention is All You Need" paper, improvements to attention techniques, specialized attention varieties, and what neural networks actually attend to. Dive into topics like sentence representations, attention score functions, multi-headed attention, training tricks, and applications to various modalities. Gain insights on incorporating Markov properties, coverage, dictionary probabilities, and handling multiple sources in attention-based models.

Syllabus

Intro
Sentence Representations
Calculating Attention (1)
A Graphical Example
Attention Score Functions (1)
Attention Score Functions (2)
Multi-headed Attention
Attention Tricks
Summary of the Transformer
Training Tricks
Masking for Training
Incorporating Markov Properties
Coverage
Input Sentence: Copy
Dictionary Probabilities
Previously Generated Things
Various Modalities
Multiple Sources


Taught by

Graham Neubig

Related Courses

Deep Learning for Natural Language Processing
University of Oxford via Independent
Sequence Models
DeepLearning.AI via Coursera
Deep Learning Part 1 (IITM)
Indian Institute of Technology Madras via Swayam
Deep Learning - Part 1
Indian Institute of Technology, Ropar via Swayam
Deep Learning - IIT Ropar
Indian Institute of Technology, Ropar via Swayam