YoVDO

CMU Advanced NLP 2021 - Adversarial Learning

Offered By: Graham Neubig via YouTube

Tags

Natural Language Processing (NLP) Courses Machine Learning Courses Loss Functions Courses

Course Description

Overview

Explore adversarial learning in natural language processing through this advanced lecture from CMU's CS 11-711 course. Delve into generative adversarial networks, examining their applications in both feature and output spaces. Investigate the challenges of applying GANs to discrete outputs and learn about adversarial techniques for discrete inputs. Gain insights into distribution matching, image generation, and unsupervised style transfer in language processing. Enhance your understanding of advanced NLP concepts and their practical implementations in this comprehensive 81-minute session led by Graham Neubig.

Syllabus

Intro
Adversarial Methods
generative adversarial networks
nonlatent models
ML vs GAN
Basic Paradigm
Loss Function
Distribution Matching
Distribution Matching Pseudocode
Why are Gans good
Image Generation
Problems
Classes
Discriminators
Questions
Discrete choices
Domain and variant representations
Language variant representations
Unsupervised style transfer


Taught by

Graham Neubig

Related Courses

Natural Language Processing
Columbia University via Coursera
Natural Language Processing
Stanford University via Coursera
Introduction to Natural Language Processing
University of Michigan via Coursera
moocTLH: Nuevos retos en las tecnologĂ­as del lenguaje humano
Universidad de Alicante via MirĂ­adax
Natural Language Processing
Indian Institute of Technology, Kharagpur via Swayam