Training Neural Networks for Computer Vision - Part I - Lecture 10
Offered By: University of Central Florida via YouTube
Course Description
Overview
Dive into the fundamentals of training neural networks in this comprehensive lecture from the University of Central Florida's Computer Vision course. Explore key concepts including network parameters, convolutional neural networks (CNNs), learning phases, and the process of minimizing cost through gradient descent. Gain insights into loss functions, differentiability, and the crucial backpropagation technique using the chain rule. Witness an optimization demo and understand the principles of stochastic gradient descent. Perfect for students and professionals seeking to deepen their understanding of deep learning applications in computer vision.
Syllabus
Intro
UCF Network Parameters - recap
Convolution - Intuition
General CNN architecture - recap
Learning phases - recap Images
Network Training - Minimize Cost
General approach
Train CNN with Gradient Descent
Loss Functions
Differentiability
Backpropagation - Chain Rule
Optimization demo
Stochastic Gradient Descent
Taught by
UCF CRCV
Tags
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera Good Brain, Bad Brain: Basics
University of Birmingham via FutureLearn Statistical Learning with R
Stanford University via edX Machine Learning 1—Supervised Learning
Brown University via Udacity Fundamentals of Neuroscience, Part 2: Neurons and Networks
Harvard University via edX