Higgs Bundles, Convex Cocompact Subgroups of SU(1,n), and Slodowy Slices
Offered By: IMSA via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a lecture on Higgs bundles, convex cocompact subgroups of SU(1,n), and Slodowy slices presented by Brian Collier from the University of California. Delve into the challenges of determining the holonomy group of a local system associated with stable Higgs bundles. Discover how certain SU(1,n) Higgs bundles on compact Riemann surfaces define convex cocompact subgroups of SU(1,n), serving as holonomies of complex variations of Hodge structure. Learn about a method that produces representations in every component of the SU(1,n) character variety and how the structure of Higgs bundles describes associated complex hyperbolic manifolds as fibrations over surfaces. Examine the significance of Filip's recent work on SO(2,3)-Higgs bundles with Anosov holonomy representations in this context. This one-hour and eight-minute talk, presented at the University of Miami, is based on joint work with Zach Virgilio.
Syllabus
Brian Collier, Uni. of Cal.: Higgs bundles, convex cocompact subgroups of SU(1,n) & Slodowy slices
Taught by
IMSA
Related Courses
Алгебраическая теория графовNovosibirsk State University via Coursera Group Theory
Brilliant Groupes finis : les mathématiques du Rubik's cube
Université de Strasbourg via France Université Numerique Introduction à la théorie de Galois
École normale supérieure via Coursera Théorie des Groupes (partie 1) - Une introduction à la théorie des catégories
École Polytechnique Fédérale de Lausanne via edX