YoVDO

Multiscale Generalized Hamiltonian Monte Carlo with Delayed Rejection

Offered By: MICDE University of Michigan via YouTube

Tags

Markov Chain Monte Carlo Courses Bayesian Statistics Courses Ordinary Differential Equations Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore advanced sampling techniques for multiscale distributions in this comprehensive lecture on Multiscale Generalized Hamiltonian Monte Carlo with Delayed Rejection. Discover how combining generalized Hamiltonian Monte Carlo and delayed rejection creates a sampler as efficient as Hamiltonian Monte Carlo, but capable of adapting step sizes for multiscale distributions. Learn about the challenges posed by multiscale distributions, such as Radford Neal's funnel example, and how this new approach overcomes limitations of fixed step sizes. Delve into the mechanics of generalized HMC, including its equivalence to Metropolis-adjusted Langevin dynamics and the use of partial momentum refreshment. Understand the importance of delayed rejection in maintaining directed exploration and how it allows for step size adjustments with Hastings-style corrections. Compare the performance of this method to standard Hamiltonian Monte Carlo techniques, including dynamic forms like the no-U-turn sampler. Conclude with insights into ongoing research on automatic tuning methods using complementary parallel chains, as developed by Matt Hoffman and Pavel Sountsov for their MEADS sampler.

Syllabus

Bob Carpenter: Multiscale Generalized Hamiltonian Monte Carlo with Delayed Rejection


Taught by

MICDE University of Michigan

Related Courses

Introduction to Probability, Statistics, and Random Processes
University of Massachusetts Amherst via Independent
Bayesian Statistics
Duke University via Coursera
Bayesian Statistics: From Concept to Data Analysis
University of California, Santa Cruz via Coursera
Improving your statistical inferences
Eindhoven University of Technology via Coursera
Bayesian Statistics: Techniques and Models
University of California, Santa Cruz via Coursera