YoVDO

Deep Dive into the Transformer Encoder Architecture

Offered By: CodeEmporium via YouTube

Tags

Transformer Architecture Courses Deep Learning Courses Neural Networks Courses Embeddings Courses Self-Attention Courses Positional Encoding Courses

Course Description

Overview

Dive deep into the transformer encoder architecture in this 21-minute video tutorial. Explore the intricacies of initial embeddings, positional encodings, and the encoder layer structure. Learn about query, key, and value vectors, self-attention matrix construction, and the importance of scaling and softmax. Understand the combination of attention heads, residual connections, layer normalization, and the role of linear layers, ReLU, and dropout. Conclude with insights on final word embeddings and a sneak peek at the code implementation.

Syllabus

Introduction
Encoder Overview
Blowing up the encoder
Create Initial Embeddings
Positional Encodings
The Encoder Layer Begins
Query, Key, Value Vectors
Constructing Self Attention Matrix
Why scaling and Softmax?
Combining Attention heads
Residual Connections Skip Connections
Layer Normalization
Why Linear Layers, ReLU, Dropout
Complete the Encoder Layer
Final Word Embeddings
Sneak Peak of Code


Taught by

CodeEmporium

Related Courses

Transformers: Text Classification for NLP Using BERT
LinkedIn Learning
TensorFlow: Working with NLP
LinkedIn Learning
TransGAN - Two Transformers Can Make One Strong GAN - Machine Learning Research Paper Explained
Yannic Kilcher via YouTube
Nyströmformer- A Nyström-Based Algorithm for Approximating Self-Attention
Yannic Kilcher via YouTube
Recreate Google Translate - Model Training
Edan Meyer via YouTube