Deep Dive into the Transformer Encoder Architecture
Offered By: CodeEmporium via YouTube
Course Description
Overview
Dive deep into the transformer encoder architecture in this 21-minute video tutorial. Explore the intricacies of initial embeddings, positional encodings, and the encoder layer structure. Learn about query, key, and value vectors, self-attention matrix construction, and the importance of scaling and softmax. Understand the combination of attention heads, residual connections, layer normalization, and the role of linear layers, ReLU, and dropout. Conclude with insights on final word embeddings and a sneak peek at the code implementation.
Syllabus
Introduction
Encoder Overview
Blowing up the encoder
Create Initial Embeddings
Positional Encodings
The Encoder Layer Begins
Query, Key, Value Vectors
Constructing Self Attention Matrix
Why scaling and Softmax?
Combining Attention heads
Residual Connections Skip Connections
Layer Normalization
Why Linear Layers, ReLU, Dropout
Complete the Encoder Layer
Final Word Embeddings
Sneak Peak of Code
Taught by
CodeEmporium
Related Courses
NeRF - Representing Scenes as Neural Radiance Fields for View SynthesisYannic Kilcher via YouTube Perceiver - General Perception with Iterative Attention
Yannic Kilcher via YouTube LambdaNetworks- Modeling Long-Range Interactions Without Attention
Yannic Kilcher via YouTube Attention Is All You Need - Transformer Paper Explained
Aleksa Gordić - The AI Epiphany via YouTube NeRFs- Neural Radiance Fields - Paper Explained
Aladdin Persson via YouTube