Automatic Text Summarization
Offered By: NDC Conferences via YouTube
Course Description
Overview
Explore automatic text summarization techniques in this comprehensive 58-minute conference talk. Delve into the process of shortening text documents using software to create accurate and fluent summaries. Learn about extractive and abstractive approaches, examining common algorithms and tools used in the field. Discover methods for evaluating automated summaries, including precision, recall, utility, and the pyramid method. Gain insights into challenges like lack of balance and cohesion in extractive summaries. Investigate various techniques such as positional method, Luhn's method, Edmundson's method, and FRUMP. Understand the application of classification, maximal marginal relevance, and sequence-to-sequence models in text summarization. Acquire knowledge to determine what makes a good summary and how to assess its quality effectively.
Syllabus
Intro
Automatic text summarization
Extractive vs. Abstractive Summary
Extractive Summaries-Lack of balance
Extractive Summaries-Lack of cohesion
Positional method
Luhn's method
Edmundson's method
FRUMP - Demonstration script
Classification
Maximal marginal relevance
Sequence to sequence
What makes a good summary?
Types of evaluation methods
Precision and Recall
Utility
Pyramid method
Taught by
NDC Conferences
Related Courses
Health Informatics: Data and Interoperability StandardsGeorgia Institute of Technology via edX Fractal Architecture
NDC Conferences via YouTube Strangling the Monolith - Applied Patterns & Practices from the Trenches
NDC Conferences via YouTube Refactoring Is Not Just Clickbait
NDC Conferences via YouTube Amazing Algorithms for Solving Problems in Software
NDC Conferences via YouTube