Arthur-César le Bras - p-adic Geometry - Vector Bundles on the FarguesFontaine Curve
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore vector bundles on the Fargues-Fontaine curve in this advanced mathematics lecture. Delve into p-adic geometry as Arthur-César le Bras presents a comprehensive analysis of this complex topic. Gain insights into the intricate relationships between vector bundles and the Fargues-Fontaine curve, a fundamental concept in modern algebraic geometry. Enhance your understanding of p-adic theory and its applications in advanced mathematical research.
Syllabus
Arthur-César le Bras - p-adic Geometry, 3: Vector bundles on the FarguesFontaine curve
Taught by
Hausdorff Center for Mathematics
Related Courses
Jacob Lurie: A Riemann-Hilbert Correspondence in P-Adic GeometryHausdorff Center for Mathematics via YouTube Jacob Lurie: A Riemann-Hilbert Correspondence in p-adic Geometry
Hausdorff Center for Mathematics via YouTube Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry Part 2
Hausdorff Center for Mathematics via YouTube Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry Part 1
Hausdorff Center for Mathematics via YouTube Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry
Hausdorff Center for Mathematics via YouTube