YoVDO

Thermalization of Quantum Memories - A Tensor Networks Approach

Offered By: Erwin Schrödinger International Institute for Mathematics and Physics (ESI) via YouTube

Tags

Tensor Networks Courses Quantum Error Correction Courses Thermalization Courses Spectral Gap Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the thermalization of quantum memories through a tensor networks approach in this comprehensive lecture. Delve into the commonly held belief that 2D quantum memories cannot be self-correcting when exposed to a thermal bath. Examine recent results confirming this belief for 2D Kitaev's quantum double models. Learn about the proof based on representing the Gibbs state of quantum double models as a PEPS (Projected Entangled Pair State). Understand how this representation allows for rigorous estimation of the spectral gap of the corresponding parent Hamiltonian. Gain insights into the implications of these findings for quantum memory stability and relaxation times as a function of system size.

Syllabus

Angelo Lucia - Thermalization of quantum memories - a tensor networks approach


Taught by

Erwin Schrödinger International Institute for Mathematics and Physics (ESI)

Related Courses

Dynamics of Smooth Surface Diffeomorphisms - Spectral Gap and Stochastic Properties
ICTP Mathematics via YouTube
Thermodynamic Formalism for Dispersing Billiards
International Mathematical Union via YouTube
Spectral Gaps of Random Covers of Hyperbolic Surfaces
Hausdorff Center for Mathematics via YouTube
Heights on Character Varieties, Free Subgroups and Spectral Gaps by Emmanuel Breuillard
International Centre for Theoretical Sciences via YouTube
Spectral Gap Estimates for the Random Field Ising Model - Lecture
Institute for Pure & Applied Mathematics (IPAM) via YouTube