Algebraic vs Topological K-Theory - Lecture 1
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore the fundamental concepts of K-theory and its applications in algebra, geometry, and number theory in this lecture by Andreas Thom. Delve into the comparison between algebraic and topological K-theory for specific rings of functional analytic type. Examine the algebraic K-theory of stable algebras and rings of continuous functions. Learn about homotopy invariance theorems for algebraic K-theory stabilized by operator ideals and negative algebraic K-theory of continuous function rings. Gain insights into this complex mathematical topic through a comprehensive 31-minute presentation, part of the Hausdorff Trimester Program on Applied and Computational Algebraic Topology at the Hausdorff Center for Mathematics.
Syllabus
Andreas Thom: Algebraic vs topological K theory (Lecture 1)
Taught by
Hausdorff Center for Mathematics
Related Courses
Artin Reciprocity via SpheresFields Institute via YouTube Alexander Efimov: On the K-Theory of Large Triangulated Categories
International Mathematical Union via YouTube Real Reductive Groups, K-Theory and the Oka Principle
Hausdorff Center for Mathematics via YouTube Bott Periodicity and the "Periodic Table" of Topological Insulators and Superconductors
Hausdorff Center for Mathematics via YouTube A Categorical Description of Discriminants
IMSA via YouTube