Weakly Turbulent Solution to the Schrödinger Equation on the 2D Torus with Potential
Offered By: Erwin Schrödinger International Institute for Mathematics and Physics (ESI) via YouTube
Course Description
Overview
Explore a 30-minute conference talk on constructing a smooth solution to the linear Schrödinger equation on the 2D torus with a vanishing potential. Delve into the adaptation of CKSTT 2010 techniques to demonstrate logarithmic growth of the H^1 Sobolev norm in a linear setting. Examine how nonlinear ideas provide new insights into the linear problem through Fourier mode analysis and a discrete resonant system of ODEs. Discover the construction of a special solution resembling a sequence of finite-dimensional linear oscillators, revealing the energy propagation mechanism to higher frequencies. Gain a deeper understanding of the growth rate control and the underlying growth mechanism in this mathematical exploration presented at the Erwin Schrödinger International Institute for Mathematics and Physics.
Syllabus
Ambre Chabert - Weakly turbulent solution to the Schrödinger equation on the 2D torus with potential
Taught by
Erwin Schrödinger International Institute for Mathematics and Physics (ESI)
Related Courses
Introduction to Boundary LayersIndian Institute of Technology Madras via Swayam Advanced Fluid Mechanics
Indian Institute of Technology, Kharagpur via Swayam Advanced Concepts in Fluid Mechanics
Indian Institute of Technology, Kharagpur via Swayam Physics of Turbulence
Indian Institute of Technology Kanpur via Swayam Introduction to Astrophysical Fluids
Indian Institute of Technology Kanpur via Swayam