YoVDO

AlphaGo - Mastering the Game of Go with Deep Neural Networks and Tree Search - RL Paper Explained

Offered By: Aleksa Gordić - The AI Epiphany via YouTube

Tags

Deep Learning Courses Artificial Intelligence Courses Reinforcement Learning Courses Neural Networks Courses Game Theory Courses AlphaGo Courses Monte Carlo Tree Search Courses

Course Description

Overview

Dive into a comprehensive video explanation of the groundbreaking AlphaGo paper, which details the first AI system to defeat a professional Go player. Explore the intricate components of AlphaGo, including supervised learning policies, reinforcement learning networks, and value networks. Gain a deep understanding of Monte Carlo Tree Search (MCTS) and its application in AlphaGo. Learn about the evaluation process, older techniques, and engineering aspects behind this revolutionary AI system. Discover how neural networks and symmetries play a crucial role in AlphaGo's success, and grasp the context of why conquering the game of Go was considered a significant milestone in artificial intelligence.

Syllabus

Intro
Context behind the game of Go
High-level overview of components - SL policies
RL policy network
The value network
Going deeper
Details around value network
Understanding the search MTCS
Evaluation of AlphaGo
Older techniques
Even more detailed explanation of APV-MTCS
Virtual loss
Engineering
Neural networks and symmetries


Taught by

Aleksa Gordić - The AI Epiphany

Related Courses

Game Theory
Stanford University via Coursera
Model Thinking
University of Michigan via Coursera
Online Games: Literature, New Media, and Narrative
Vanderbilt University via Coursera
Games without Chance: Combinatorial Game Theory
Georgia Institute of Technology via Coursera
Competitive Strategy
Ludwig-Maximilians-Universität München via Coursera