YoVDO

Alexander Wagner - Nonembeddability of Persistence Diagrams into Hilbert Spaces

Offered By: Applied Algebraic Topology Network via YouTube

Tags

Persistence Diagrams Courses Hilbert Spaces Courses Kernel Methods Courses Applied Algebraic Topology Courses

Course Description

Overview

Explore the nonembeddability of persistence diagrams into Hilbert spaces in this 27-minute conference talk by Alexander Wagner. Delve into the stability of persistence diagrams and their use as signatures in statistics and machine learning. Examine the family of metrics on persistence diagrams parametrized by a constant p, and investigate the incompatibility of these metrics with inner products. Learn about the necessity of non-trivial feature maps for kernel methods and the distortion of metrics on persistence diagrams. Discover the proof that when p is strictly greater than two, the associated metric space does not coarsely embed into any Hilbert space. Follow the talk's structure, covering introduction, recap, related work, history, isometric embedding, p greater than 2, sketch, Gaussian kernel, future work, and summary.

Syllabus

Introduction
Recap
Related work
History
Isometric embedding
P greater than 2
Sketch
Gaussian kernel
Future work
Summary


Taught by

Applied Algebraic Topology Network

Related Courses

機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera
Utilisez des modèles supervisés non linéaires
CentraleSupélec via OpenClassrooms
Statistical Machine Learning
Eberhard Karls University of Tübingen via YouTube
Interplay of Linear Algebra, Machine Learning, and HPC - JuliaCon 2021 Keynote
The Julia Programming Language via YouTube
Interpolation and Learning With Scale Dependent Kernels
MITCBMM via YouTube