YoVDO

A Variational Principle of Minimum for Navier-Stokes Equation Based on the Symplectic Formalism

Offered By: Conference GSI via YouTube

Tags

Navier Stokes Equations Courses Fluid Dynamics Courses Partial Differential Equations Courses Mathematical Physics Courses Calculus of Variation Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 24-minute conference talk from GSI that delves into the fascinating world of fluid dynamics, focusing on a variational principle of minimum for the Navier-Stokes equation. Discover how the symplectic formalism is applied to this fundamental equation in fluid mechanics, providing new insights into its mathematical structure and potential applications. Gain a deeper understanding of the complex relationships between fluid flow, pressure, and viscosity as the speaker presents their innovative approach to analyzing and solving this important equation.

Syllabus

A variational principle of minimum for Navier Stokes equation based on the symplectic formalism


Taught by

Conference GSI

Related Courses

Differential Equations in Action
Udacity
Dynamical Modeling Methods for Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera
An Introduction to Functional Analysis
École Centrale Paris via Coursera
Practical Numerical Methods with Python
George Washington University via Independent
The Finite Element Method for Problems in Physics
University of Michigan via Coursera