A Variational Principle of Minimum for Navier-Stokes Equation Based on the Symplectic Formalism
Offered By: Conference GSI via YouTube
Course Description
Overview
Explore a 24-minute conference talk from GSI that delves into the fascinating world of fluid dynamics, focusing on a variational principle of minimum for the Navier-Stokes equation. Discover how the symplectic formalism is applied to this fundamental equation in fluid mechanics, providing new insights into its mathematical structure and potential applications. Gain a deeper understanding of the complex relationships between fluid flow, pressure, and viscosity as the speaker presents their innovative approach to analyzing and solving this important equation.
Syllabus
A variational principle of minimum for Navier Stokes equation based on the symplectic formalism
Taught by
Conference GSI
Related Courses
Differential Equations in ActionUdacity Dynamical Modeling Methods for Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera An Introduction to Functional Analysis
École Centrale Paris via Coursera Practical Numerical Methods with Python
George Washington University via Independent The Finite Element Method for Problems in Physics
University of Michigan via Coursera