A Fast and Flexible CFD Solver with Heterogeneous Execution - JuliaCon 2024
Offered By: The Julia Programming Language via YouTube
Course Description
Overview
Explore a conference talk from JuliaCon 2024 that delves into the evolution of WaterLily.jl, a computational fluid dynamics solver in Julia. Learn how this CFD solver transitioned from a serial-CPU implementation to a backend-agnostic solution capable of seamless execution across multi-threaded CPUs and various GPU vendors. Discover the meta-programming approach used to generalize array iterator implementation and the utilization of KernelAbstractions.jl for architecture-specific kernel specialization. Examine performance comparisons showing WaterLily.jl matching state-of-the-art CFD solvers written in C++ or Fortran in single-GPU tests. Gain insights into the potential integration of machine learning models and differentiability into the solver, expanding its capabilities for future applications.
Syllabus
A fast and flexible CFD solver with heterogeneous execution | Weymouth, Font | JuliaCon 2024
Taught by
The Julia Programming Language
Related Courses
Gradients Are Not All You Need - Machine Learning Research Paper ExplainedYannic Kilcher via YouTube Swift for TensorFlow - Google I/O 2019
TensorFlow via YouTube A Breakthrough for Natural Language - Ben Vigoda - ODSC East 2018
Open Data Science via YouTube How Hard Is It to Train Variational Quantum Circuits?
Simons Institute via YouTube Learning From Ranks, Learning to Rank - Jean-Philippe Vert, Google Brain
Alan Turing Institute via YouTube