A Fast and Flexible CFD Solver with Heterogeneous Execution - JuliaCon 2024
Offered By: The Julia Programming Language via YouTube
Course Description
Overview
Explore a conference talk from JuliaCon 2024 that delves into the evolution of WaterLily.jl, a computational fluid dynamics solver in Julia. Learn how this CFD solver transitioned from a serial-CPU implementation to a backend-agnostic solution capable of seamless execution across multi-threaded CPUs and various GPU vendors. Discover the meta-programming approach used to generalize array iterator implementation and the utilization of KernelAbstractions.jl for architecture-specific kernel specialization. Examine performance comparisons showing WaterLily.jl matching state-of-the-art CFD solvers written in C++ or Fortran in single-GPU tests. Gain insights into the potential integration of machine learning models and differentiability into the solver, expanding its capabilities for future applications.
Syllabus
A fast and flexible CFD solver with heterogeneous execution | Weymouth, Font | JuliaCon 2024
Taught by
The Julia Programming Language
Related Courses
Foundation of Computational Fluid DynamicsIndian Institute of Technology Madras via Swayam Computational Fluid Dynamics
Indian Institute of Technology Madras via Swayam A Hands-on Introduction to Engineering Simulations
Cornell University via edX Computational Fluid Dynamics For Incompressible Flows
Indian Institute of Technology Guwahati via Swayam Hydraulic Engineering
Indian Institute of Technology, Kharagpur via Swayam