YoVDO

Mestrado: Cadeia de Markov - Aula 12

Offered By: Instituto de Matemática Pura e Aplicada via YouTube

Tags

Markov Chains Courses Linear Algebra Courses Set Theory Courses Mathematical Analysis Courses Stochastic Processes Courses Probability Theory Courses Convergence Courses Measure Theory Courses Ergodic Theory Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive lecture on Markov Chains, part of the 2023 Summer School at the Instituto de Matemática Pura e Aplicada. Delve into advanced probability concepts, including convergent sequences, finite unions, arbitrary unions, and image intersections. Learn about elastic equilibrium theorem, probability theory, and measurable functions. Gain insights into recent research applications of Markov Chains. Prerequisite knowledge of elementary probability concepts and basic linear algebra is recommended. The lecture is based on the book "Markov Chains and Mixing Times" by Levin, Peres, and Wilmer, covering selected topics and introducing fundamental Markov Chain concepts.

Syllabus

Aviso
Definições
Propriedades
Sequência de convergente
Definição de probabilidade
União finita
Propriedade do conjunto original
Propriedade do conjunto não coar
União arbitrária
Interseção de imagens
Definição de interseção de imagens
Teorema do equilíbrio elástico
Teoria da probabilidade
Conjuntos
Equivalentes aleatórios
Interação entre os planetas
Espaço de probabilidade
Função mensurável


Taught by

Instituto de Matemática Pura e Aplicada

Related Courses

Probability - The Science of Uncertainty and Data
Massachusetts Institute of Technology via edX
Introduction to Probability, Statistics, and Random Processes
University of Massachusetts Amherst via Independent
Bioinformatique : algorithmes et génomes
Inria (French Institute for Research in Computer Science and Automation) via France Université Numerique
Algorithms for Big Data
Indian Institute of Technology Madras via Swayam
Quantitative Model Checking
EIT Digital via Coursera