Machine Learning with Python from Scratch
Offered By: Udemy
Course Description
Overview
What you'll learn:
- Have an understand of Machine Learning and how to apply it in your own programs
- Understand and be able to use Pythons main scientific libraries for Data analysis - Numpy, Pandas, Matplotlib and Seaborn.
- Understand and be able to use artificial neural networks
- Obtain a solid understand of machine learning in general
- Potential for a new job in the future.
Machine Learning is a hot topic!Python Developers who understand how to work with Machine Learning are in high demand.
But how do you get started?
Maybe you tried to get started with Machine Learning, but couldn’t find decent tutorials online to bring you up to speed, fast.
Maybe the information you found was too basic, and didn’t give you the real-world Machine learning skills using Python that you needed.
Or maybe the information got bogged down in complex math explanations and was too difficult to relate to.
Whatever the reason, you are in the right place if you want to progress your skills in Machine Language using Python.
This course will help you to understand the main machine learning algorithms using Python, and how to apply them in your own projects.
But what exactly is Machine Learning?
It’s a field of computer science that gives computers the ability to “learn” – e.g. continually improve performance on a specific task, with data, without being explicitly programmed.
Why is it important?
Machine learning is often used to solve tasks considered too complex for humans to solve.We create algorithms and apply a bunch of data to that algorithm and let the computer process (execute) the algorithm and search for a model (solution).
Because of the practical applications of machine learning, such as self driving cars (one example) there is huge interest from companies and government in Machine learning, and as a result, there are a a lot of opportunities for Python developers who are skilled in this field.
If you want to increase your career options, then understanding and being able to work with Machine Learning with your own Python programs should be high on your list of priorities.
What will you learn in this course?
For starters, you will learn about the main scientific libraries in Python for data analysis such as Numpy, Pandas, Matplotlib and Seaborn. You’ll then learn about artificial neural networks and how to work with machine learning models using them.
You obtain a solid background in machine learning and be able to apply that knowledge directly in your own programs.
What are the Main topics included in the course?
Data Analysis with Numpy, Pandas, Matplotlib and Seaborn.
The machine learning schema.
Overfitting and Underfitting
K Fold Cross Validation
Classification metrics
Regularization:Lasso, Ridge and ElasticNet
Logistic Regression
Support Vector Machines for Regression and Classification
Naive Bayes Classifier
Decision Trees and Random Forest
KNN classifier
Hyperparameter Optimization:GridSearchCV
Principal Component Analysis (PCA)
Linear Discriminant Analysis (LDA)
Kernel Principal Component Analysis (KPCA)
Ensemble methods: Bagging
AdaBoost
K means clustering analysis
Regression model and evaluation
Linear and Polynomial Regression
SVM, KNN, and Random Forest for Regression
RANSAC Regression
Neural Networks: Constructing our own MLP.
Perceptron and Multilayer Perceptron
And don’t worry if you do not understand some, or all of these terms. By the end of the course you will know what they are and how to use them.
Why enrolling in this course is the best decision you can make.
This course helps you to understand the difficult concepts of Machine learning in a unique way. Rather than just focusing on complex maths explanaitons, simpler explanations with charts, and info displays are included.
Many examples and genuinely useful code snippets are also included to make it even easierto learn and understand.
After completing this course, you will have the necessary skills to apply Machine learning in your own projects.
The sooner you sign up for this course, the sooner you will have the skills and knowledge you need to increase your job or consulting opportunities. Your new job or consulting opportunityawaits!
Why not get started today?
Click theSignupbutton to sign up for the course!
Taught by
Tim Buchalka's Learn Programming Academy and CARLOS QUIROS
Related Courses
Design Computing: 3D Modeling in Rhinoceros with Python/RhinoscriptUniversity of Michigan via Coursera A Practical Introduction to Test-Driven Development
LearnQuest via Coursera FinTech for Finance and Business Leaders
ACCA via edX Access Bioinformatics Databases with Biopython
Coursera Project Network via Coursera Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera