Machine Learning e Data Science com R de A a Z
Offered By: Udemy
Course Description
Overview
What you'll learn:
- Tenha uma base teórica sólida sobre os principais algoritmos de Machine Learning
- Utilize os recursos da linguagem R aplicado em Data Science e Machine Learning
- Aprenda na teoria e na prática sobre os algoritmos de Machine Learning para classificação, regressão, regras de associação e agrupamento
- Aprenda a realizar o pré-processamento em bases de dados
- Entenda como funcionam as técnicas para redução de dimensionalidade PCA, KernelPCA e LDA
- Aprenda a avaliar os algoritmos de Machine Learning usando estatística não paramétrica
- Aprenda a detectar outliers em bases de dados
A área de Machine Learning (Aprendizagem de Máquina) é atualmente um dos campos de trabalhomais relevantesda Inteligência Artificial, sendo responsável pela utilização de algoritmos inteligentes que tem a função de fazer com que os computadores aprendam por meio de bases de dados. O mercado de trabalho de Machine Learning nos Estados Unidos e em vários países da Europa está em grande ascensão; e a previsão é que no Brasil cada vez mais esse tipo de profissional seja requisitado! Inclusive alguns estudos apontam que o conhecimento dessa área será em breve um pré-requisito para os profissionais de Tecnologia da Informação! E dentro deste contexto está o cientista de dados, que já foi classificado como o trabalho "número 1" por vários veículos da mídia internacional.
E para levar você até essa área, neste curso completo você terá uma visão teórica e prática sobre os principais algoritmos de machine learning utilizando o R, que é uma das linguagens de programação mais relevantes nesta área de ciência de dados. Este curso é considerado de A à Z pelo fato de apresentar desde os conceitos mais básicos até técnicas mais avançadas, de modo que ao final você terá todas as ferramentas necessárias para construir soluções complexas e que podem ser aplicadas em problemas do dia-a-dia das empresas! Você aprenderá tudo passo a passo, ou seja, tanto a teoria quanto a prática de cada algoritmos! O curso é dividido em cinco partes principais:
Classificação - pré-processamento dos dados, naive bayes, árvores de decisão, random forest, regras, regressão logística, máquinas de vetores de suporte (SVM), redes neurais artificiais, avaliação de algoritmos e combinação e rejeição de classificadores
Regressão - regressão linear simples e múltipla, polinomial, árvores de decisão, random forest, vetores de suporte (SVR) e redes neurais artificiais
Regras de associação - algoritmos apriori e ECLAT
Agrupamento - k-means, agrupamento hierárquico e DBSCAN
Tópicos complementares - redução de dimensionalidade com PCA, KernelPCA e LDA e deteção de outliers
É importante salientar que como a área de machine learning é muito dinâmica e novos assuntos aparecem constantemente, novos conteúdos podem ser postados na parte 5! Este curso tem o objetivo de servir como um referencial de consulta sobre as técnicas abordadas, por isso ele procura cobrir a maior parte dos assuntos que envolvem machine learning. Este curso pode ser categorizado para todos os níveis, pois pode servir de base para consulta para alunos mais experientes no assunto e também um ótimo guia para quem está iniciando na área!
Preparado(a) para dar um importante passo na sua carreira? Aguardo você no curso! :)
Taught by
Jones Granatyr and IA Expert Academy
Related Courses
FinTech for Finance and Business LeadersACCA via edX Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera Advanced AI on Microsoft Azure: Ethics and Laws, Research Methods and Machine Learning
Cloudswyft via FutureLearn Ethics, Laws and Implementing an AI Solution on Microsoft Azure
Cloudswyft via FutureLearn Post Graduate Certificate in Advanced Machine Learning & AI
Indian Institute of Technology Roorkee via Coursera