YoVDO

【Hands Onで学ぶ】PyTorchによる深層学習入門

Offered By: Udemy

Tags

Machine Learning Courses Deep Learning Courses PyTorch Courses Long short-term memory (LSTM) Courses Transfer Learning Courses Overfitting Courses Autoencoders Courses ResNet Courses

Course Description

Overview

人気急上昇中のAIフレームワークであるPyTorchを用いて深層学習の様々なモデルを構築し、機械学習・深層学習の基礎を固めましょう。機械学習・深層学習を"知識として知っている"人から、"使える・使いこなせる"人へとステップアップしませんか?

What you'll learn:
  • 研究者の間で急激に人気を伸ばしているPyTorchというAIフレームワークについてライブラリの基本から、深層学習の学習の手続きまでのプログラミング方法を理解できる
  • 多層NNや畳み込みNNといった基本的なモデルに加えて、転移学習、オートエンコーダー、ResNet、LSTMといった様々なモデルを構築する事で、深層学習の基礎を固める事が出来る
  • 過学習への対処方法や、GPUでの学習方法、自前で用意した画像データセットの使用方法など研究開発の現場で使用する実際的なスキルを身に付けることが出来る

【PyTorchとは?】

PyTorchとはFacebook AIResearchが開発している深層学習のフレームワークです。KerasやTensorFlowといった他のフレームワークと比較して、Define by Runという計算しながらモデルを作る性質や、クラスを使って複数のパーツから複雑なAIのモデルを組むことが出来る点からモデル構築の柔軟性という面で非常に優れます。この為、近年、国内外の研究者を中心としてシェアが急激に伸びてきています。


【対象者とゴール】

Pythonの基本的なプログラミング知識があり、教科書・参考書などで機械学習や深層学習を既にある程度知っているエンジニアや研究者の方を対象に、PyTorchにおけるプログラミングを通して深層学習の基礎を固めるコースです。本コースのゴールは"機械学習を知っている"から"機械学習を使える"へとステップアップする事です。


ハンズオン

本コースはハンズオンという形式で、Google Colab上でデータの準備⇒深層学習のモデル作成⇒損失関数・オプティマイザの設定⇒学習・評価という一連の流れをスクラッチから講師と一緒に実装していきます

機械学習を”知っている状態"から実際に"使える状態"になるには、実際にプログラミングをして手を動かすことが非常に重要です。

例えば、教科書的な知識として、活性化関数(シグモイド関数 / Tanh / ReLU)を知っていたとします。この時、実際にどの活性化関数を使えばよいのか、こういった問いに対する答えは"実際に試してみる"という事です。


機械学習や深層学習の分野では理論的に答えを出せる場合もありますが、ヒューリスティック(経験的)に見つけるといった場合が非常に多いです。この為、本コースでは手を動かしてプログラムを実装する(Hands On)という事を非常に重視しています。


コースの概要

詳細は本コースの概要説明をご覧ください。

本コースは機械学習・深層学習の復習やPyTorchのライブラリの基本的な使い方など基礎的な内容から段階的にステップアップしていきます。

この為、無理なくステップアップすることが出来ます。

【PyTorchの基礎】

  1. 本コースの概要

  2. Tensorとは

  3. GoogleColabの使い方

  4. PyTorchの基本的な使い方

  5. 自動微分

  6. 機械学習の流れ

  7. PyTorchプログラミングの流れ

  8. ソースコードの配布


    【深層学習の基礎1】

  9. 線形回帰

  10. MLPによる手書き数字の分類(MNIST) 概要

  11. MLPによる手書き数字の分類(MNIST) 実装

  12. モデルの保存・読み込み

  13. CNNによるクラス分類(CIFAR 10) 概要

  14. CNNによるクラス分類(CIFAR 10) 実装


    【深層学習の基礎2】

  15. データ拡張とは

  16. データ拡張の効果の検証

  17. 転移学習 概要

  18. 転移学習 実装

  19. オートエンコーダー 概要

  20. オートエンコーダー 実装

  21. グラフの読み方

  22. ResNet概要

  23. ResNet実装

  24. カスタムデータセット 概要

  25. カスタムデータセット 実装

  26. LSTMとは

  27. LSTM 実装

まずは無料プレビューできる動画が30分以上あります。プレビューだけでも見ていってください。


Taught by

Tetsuya T

Related Courses

Advanced CNNs, Transfer Learning, and Recurrent Networks
Packt via Coursera
Creating Multi Task Models With Keras
Coursera Project Network via Coursera
Object Detection Recognition and Tracking
Pluralsight
Deep Learning: Advanced Computer Vision (GANs, SSD, +More!)
Udemy
Designing an Architecture for Physics-Informed Machine Learning - Part 3
Steve Brunton via YouTube