Тренды и классификации
Offered By: Novosibirsk State University via Coursera
Course Description
Overview
В этом курсе мы поговорим о трендах и классификаторах. Анализ трендов помогает ответить на вопросы вроде: растут ли продажи, увеличивается ли количество пользователей сервиса? Если есть рост, то случайность это или закономерность? Есть ли в данных сезонные колебания? Как выделить тренд и как объяснить его?
Также мы поговорим о факторном анализе, который позволяет найти скрытую переменную (или переменные), направляющие проявление множества видимых признаков. Как найти такие скрытые переменные и понять, что за ними стоит?
В заключительной части курса поговорим о классификаторах, применение которых решает задачи отнесения объектов к тому или иному классу с определенной вероятностью, а также позволяет прогнозировать попадание нового объекта в определенный класс. Как предсказать исход события, зная основные характеристики действующего лица? Закончит ли слушатель курс, отдаст ли заемщик кредит? Как оценить точность прогноза и минимизировать ошибки?
Мы разберемся с устройством обозначенных методов анализа данных и попрактикуемся в их применении.
Узнать об образовательных программах Новосибирского государственного университета: https://education.nsu.ru/bachelor/
Также мы поговорим о факторном анализе, который позволяет найти скрытую переменную (или переменные), направляющие проявление множества видимых признаков. Как найти такие скрытые переменные и понять, что за ними стоит?
В заключительной части курса поговорим о классификаторах, применение которых решает задачи отнесения объектов к тому или иному классу с определенной вероятностью, а также позволяет прогнозировать попадание нового объекта в определенный класс. Как предсказать исход события, зная основные характеристики действующего лица? Закончит ли слушатель курс, отдаст ли заемщик кредит? Как оценить точность прогноза и минимизировать ошибки?
Мы разберемся с устройством обозначенных методов анализа данных и попрактикуемся в их применении.
Узнать об образовательных программах Новосибирского государственного университета: https://education.nsu.ru/bachelor/
Syllabus
- Анализ временных рядов
- В этом модуле мы начнем разговор о временных рядах.
Сначала разберемся с понятием временного ряда, затем поговорим об анализе временных рядов. Рассмотрим такие компоненты временного ряда, как тренд, сезонность и остатки.
После этого рассмотрим методы разложения временного ряда на составляющие и поймём, как и зачем выделять описанные компоненты во временных рядах. В заключении поговорим о том, как выявлять выбросы в данных, а также посмотрим на практике, как разложить временной ряд на трендовую составляющую, сезонную компоненту и остатки, используя R. - Прогноз временных рядов
- В этом модуле мы продолжим разговор о временных рядах и научимся не только анализировать, но и прогнозировать их. Сначала рассмотрим авторегрессионную модель (AR) и сезонную авторегрессионную модель (SAR), которые подходят для решения задач прогнозирования, а также модели скользящего среднего (MA-модели), позволяющие сглаживать выбросы и описывать данные. Дальше поговорим о комбинации этих моделей (ARMA и ARIMA).
Во второй части модуля мы поговорим об адаптивных моделях, обсудим их основные виды, а также поговорим о следящем контроле как инструменте их мониторинга. В заключении модуля попрактикуемся: построим прогноз временного ряда в R. - Факторный анализ
- В этом модуле поговорим о факторном анализе. Сначала поймем общий принцип: что это за модель, и для решения каких задач она применяется. Дальше разберем методы факторного анализа и научимся строить факторы одним из самых распространенных способов: методом главных компонент. В заключительных лекциях модуля мы поговорим о том, как оценить качество факторной модели, как можно использовать построенные переменные для дальнейшего анализа, а также пошагово разберем построение факторной модели в SPSS.
- Классификация
- В завершающем модуле курса мы поговорим о методах классификации. Для начала поставим задачу классификации: для чего применяются классификаторы, какие задачи из реальной жизни они помогают решать. Затем разберем некоторые методы классификации: линейный и Байесовский классификаторы, дерево решений, модель бинарной логистической регрессии и способы оценки её качества.
Вы научитесь прогнозировать класс, в который попадёт объект с заданной вероятностью (к примеру, отдаст ли заёмщик кредит, или закончит ли студент курс), а также познакомитесь с тем, как применять методы классификации в R и SPSS на реальных данных. - Итоговое задание
Taught by
Ольга Ечевская, Наталья Галанова and Виктор Дёмин
Tags
Related Courses
Ruralization: Creating New Opportunities in Rural AreasDelft University of Technology via edX Market Strategy Essentials: Solving Business Problems Through Trend and Competitor Analysis
University of Cape Town via edX Difference in Differences for Causal Inference
Codecademy Consigue la venta: crea, lanza y administra tiendas de comercio electrónico
Google via Coursera Construye audiencias y seguidores en Twitter con Hashtags
Coursera Project Network via Coursera