Tracking Objects in Video with Particle Filters
Offered By: Coursera Project Network via Coursera
Course Description
Overview
In this one hour long project-based course, you will tackle a real-world computer vision problem. We will be locating and tracking a target in a video shot with a digital camera. We will encounter some of the classic challenges that make computer vision difficult: noisy sensor data, objects that change shape, and occlusion (object hidden from view).
We will tackle these challenges with an artificial intelligence technique called a particle filter.
By the end of this project, you will have coded a particle filter from scratch using Python and numpy.
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Syllabus
- Project Overview
- In this one hour long project-based course, you will tackle a real-world computer vision problem. We will be locating and tracking a target in a video shot with a digital camera. We will encounter some of the classic challenges that make computer vision difficult: noisy sensor data, objects that change shape, and occlusion (object hidden from view). We will tackle these challenges with an artificial intelligence technique called a particle filter.
Taught by
Daniel Romaniuk
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Computational Photography
Georgia Institute of Technology via Coursera Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera Introduction to Computer Vision
Georgia Institute of Technology via Udacity