YoVDO

Fabrication Techniques for MEMs-Based Sensors : Clinical Perspective

Offered By: Indian Institute of Science Bangalore via Swayam

Tags

Electrical Engineering Courses Lithography Courses

Course Description

Overview

This course is designed with an aim of educating students in the area of microtechnology and its use to fabricate sensors and systems. The students will have an exposure to sensors and its importance in the real world. The students will also able to understand how to fabricate some of those sensors. Several examples of engineering devices used in clinical research will be also covered. Class 10000 non-conventional clean room and some equipment within it will also be shown. Below are some of the course outcomes. Ability to understand microfabrication process Understand sensors used in electronics and biomedical areas Understand Clean Room (Class 1 to Class 10000) Understand Microengineering Technology Design the process flow for fabricating microheater required in gas sensors. Design the process flow for fabricating forces sensors for biomedical application. Design microheater for gas sensors as per specifications. Design force sensors as per specifications. Understand fabrication of microfluidic platforms, micro-cantilevers, flexible force sensors, inter-digitated electrodes, polymer-glass bonding etc. for clinical researchINTENDED AUDIENCE :Engineering Students, Faculty from Engineering CollegesPREREQUISITES : Basic ElectronicsINDUSTRY SUPPORT :Companies working in semiconductors and integrated circuits: Intel, AMD, Samsung, Texas Instruments, Analog Devices etc.

Syllabus

Week 1 : Introduction to microengineering devices and its applications Week 2 : Clean room, contaminants, wafer cleaning processes (DI water, RCA, metallic impurities, etc.). Week 3 : Introduction to the microheater, force sensors, microfluidic devices, its specifications, and applications. Week 4 : Masks: Types of masks, Types of Photoresists, Spin Coaters Lithography process: optical lithography, x-ray, and e-beam lithography, lift-off techniques, soft lithography, Use of resists (spin coating, positive and negative photoresists), photoresist pre-baking, exposure, and development. Week 5 : Etching: Isotropic/anisotropic, selectivity, wet and plasma assisted etching. Week 6 : Types of wafers and orientations. Techniques of metallization: PVD [(Sputtering – DC, RF, and Magnetron), thermal evaporation, e-beam evaporation]. Week 7 : Chemical Vapor Deposition: Dielectric films (Plasma Enhance Chemical Vapor Deposition (PECVD)), Atomic Layer Deposition Week 8 : Understanding and designing the process flow for fabricating microengineering devices. Process flow for microheater, force sensors, and microfluidic devices. Week 9 : Wafer dicing and bonding techniques. Microfluidic Chips Week 10 : Process Flow for Fabricating Flexible Force Sensors and Force Sensors on Silicon, Process Flow for Fabricating VOC sensors, Biochips Week 11 : Clinical Research: Problems and Solutions using Microengineering Device Week 12 : Visit to non-conventional Class 10000 Clean Room and discussing few equipment within

Taught by

Prof.Hardik J. Pandya & Prof Chandramani Kishore Singh

Tags

Related Courses

Micro and Nanofabrication (MEMS)
École Polytechnique Fédérale de Lausanne via edX
Nanomanufacturing
Stanford University via Stanford OpenEdx
Electronic Systems for Cancer Diagnosis
Indian Institute of Science Bangalore via Swayam
Fundamentals of Electronic Device Fabrication
Indian Institute of Technology Madras via Swayam